Gold Nanoparticles as anti-ovarian cancer therapy

Hayat Awadh Mekradh*, Fatimah Mezaal Hameed*

*Al-Diwaniya maternity and child teaching hospital, Al-Diwaniya province, Iraq.

Corresponding author: Hayat Awadh Merkadh, Al-Diwaniya maternity and child teaching hospital, Al-Diwaniya province, Iraq.email: hayat.merkadh@gmail.com

Abstract

Cancer of the ovary is one of the most common types of women cancer in the world. In Iraq, it is seventh cancer in Iraqi women. Nanomedicine emerged as a possible alternative for cancer therapy. Many nanoparticles have been tested on different cancer cell lines with promising results. Gold nanoparticles (AuNPs) showed interesting biocompatibility properties such as selective accumulation in tumor cells. The currentwork was aimed to study cytotoxicity and cell death induced by AuNPson ovarian cancer cells. Methods: Cytotoxicity of AuNPs was assessed by MTT viability assay. Results: AuNPs nanoparticles from 25 up to 100 μ g/mL for 72 hours exerted concentration-dependent cytotoxicity. Conclusion: Gold nanoparticles induce cytotoxicity in ovarian cancer cells and Induce cell death and considered promising as cancer therapy.

Keywords: Gold nanoparticles (AuNPs), cytotoxicity. Cell death

Introduction

Ovarian cancer ranked seventh common cancer in females worldwide, and the eighth cause of cancer mortality, furthermore, it had five-year survival rates under 45% ¹.Incidencediffers according to ethnicity, as white women are 30% higher than Asian and African women². Ovarian cancer peaking in the late 70s, and it has a very low incidence inwomen of age below 40 years. Most of the high-grade serous cancers are recently showed to originate from the fallopian tube ³. Cancer incidence has increased in Iraq, this elevation related to numerous factors connected to environmental pollution associated with conflicts for several years ⁴. Ovarian cancer also ranked seventh in Iraqi women ⁵.Treatment resistance of ovarian cancerusuallyarises in 80-90% of cancer patients who are originally diagnosed with widespread ovarian malignancies⁶. Overcoming ovarian cancer resistance to conventional chemotherapy will need a variety of methods ⁷.

Nanoparticles considered a novel platform to produce safe and effective cancer treatment^{8,9}. The unique chemical and physical properties of nanoparticles¹⁰, led toa wide range of applications in the biomedical field¹¹ such as cancer^{12,13}. Furthermore, the expected toxic effect of AuNPs may be multisided and is hard to predict, and othersrevealed no biological impact on health and safety ^{14,15}. AuNPs were reported to be to cytotoxic ondiverse cancer cells such breast cancer ¹⁶, and human lung carcinoma cells ¹⁷ which has been demonstrated that the AuNPs nanoparticles had inhibition to proliferation through the generation of oxidative stress, and changes in Wnt signaling pathway ¹⁸. Moreover, AuNPs can be used for drug delivery such as for loading linalool, which is monoterpene alcohol from aromatic plantsthat showed in-vitro anticancer activities against breast cancer¹⁹. Better treatment is necessary, which should show increased efficacy as well as a low toxicity, selective with high safety margin based on the patient and the clinical characteristics of the disease ²⁰.In the current study, we testedAuNPs nanoparticles as promising anticancer therapy. The effect of AuNPs nanoparticles was examined on human ovarian cancer.

Materials and Methods Maintenance of cell cultures

The human ovarian cancer cell line, SKOV3 growing in a MEM medium were (Usbiological, USA) supplied with 10% fetal bovine serum (FBS), 100 µg/mL streptomycin and 100 units/mL penicillin(Capricorn- Scientific, Germany). The cell lineis regularly evaluated for standard growth characteristics. SKOV3 cell line was cultured as a confluent adherent monolayer and incubated at 37°C in5% CO2 humidified atmosphere. Trypsin-EDTA was used for harvestingof the monolayer cells (Capricorn-Scientific, Germany)^{21,22}.

Gold nanoparticles

In this study was used gold nanoparticles(AuNPs), they are highly stable and suitable for biological applications and of 10nm size ¹⁹.

Cytotoxicity determination using MTT assay

The SKOV3 cells were seeded at 1×10^4 cells/mL in 96 well microplates in MEM growth media and allowed for overnight incubation at 37°C for adhesion and proliferation. AuNPs were exposed in triplicate at a different concentration from 3.2 to 100µg and incubated for 72 hrs. After that, the MTT viability stain was used at a of concentration $2\mu g/ml$. After 3h incubation at 37°C.Dimethyl Sulfoxide(DMSO) was added to all wells.The measurement of absorbance was done at 580 nm using biochrom microplate reader. Results of the assay were shown as a percentage of proliferation relative to control cells^{23,24}

Statistical analysis

The collected data were statically analyzed using multiple comparison ANOVA testsusing GraphPad Prism 6.07; values were presented as the mean \pm S.D of the triplicates.

Findings

GNPs inhibits growth of SKOV3 ovarian cancer cells

The cytotoxic effects AuNPs on the growth inhibition of human ovarian cancer cell lines SKOV3 for 72h were examined, as shown in figure 1. The study results revealed significant cytotoxicityon SKOV3 ovarian cancer cell line after 72 hrs. The cellscytotoxicity was significantly higher when compared to control untreated cells. After 72h treatment with AuNPs, the effective concentrations were 25, 50and100 µg/mL and the Cytotoxicity effect of AuNPs showed significant cytotoxic effect on the ovarian cancer cells, each concentration showed more significant effect with higher concentration as shown in table 1. The experiment results showed that AuNPs are suggested to be themostvalued source of actualcytotoxic and proliferation inhibitory agent. The apoptoticinduction was studied through cytopathological changes in SKOV3 cell line using a phase contrast inverted microscope. In Figure 2, the untreated cells displayed that the cells preserved their unique morphology; most of the untreated cells were attached to the tissue culture plate. Meanwhile, SKOV3 cells treated with AuNPs exhibited detachment and pathological morphological changes. IC50, which is the inhibitory concentration that kills 50% of the cells, was 11.28µg (Figure-2).

Figure-1, Cytotoxic effect of AuNPs nanoparticles in ovarian cancer SKOV3 cell lines. The cell lines were treated for 72 h with different concentrations of AuNPs nanoparticles (3.2 to 100 μ g/ml). The cytotoxicity of the nanoparticles was determined using the MTT viability assay and is expressed in terms of the growth inhibition rate. All concertation showed significant inhibition in cancer cells.

Table-1,	The col	lected	data v	vere s	tatical	ly anal	lyzed	using	multipl	e comp	arison	ANO	VA	tests

Tukey's multiple comparisons				
tests	Mean Diff.	95% CI of diff.	Significant?	Summary
3.2µg/mL vs. 6.25 µg/mL	-11.67	-20.99 to -2.344	Yes	*
3.2µg/mL vs. 12.5 µg/mL	-31.67	-40.99 to -22.34	Yes	****
3.2µg/mL vs. 25 µg/mL	-46.00	-55.32 to -36.68	Yes	****
3.2µg/mL vs. 50 µg/mL	-63.67	-72.99 to -54.34	Yes	****
3.2µg/mL vs. 100 µg/mL	-71.33	-80.66 to -62.01	Yes	****
6.25 μg/mL vs. 12.5 μg/mL	-20.00	-29.32 to -10.68	Yes	***
6.25 μg/mL vs. 25 μg/mL	-34.33	-43.66 to -25.01	Yes	****
6.25 μg/mL vs. 50 μg/mL	-52.00	-61.32 to -42.68	Yes	****
6.25 μg/mL vs. 100 μg/mL	-59.67	-68.99 to -50.34	Yes	****
12.5 μg/mL vs. 25 μg/mL	-14.33	-23.66 to -5.010	Yes	**
12.5 μg/mL vs. 50 μg/mL	-32.00	-41.32 to -22.68	Yes	****
12.5 μg/mL vs. 100 μg/mL	-39.67	-48.99 to -30.34	Yes	****
25 μg/mL vs. 50 μg/mL	-17.67	-26.99 to -8.344	Yes	***
25 μg/mL vs. 100 μg/mL	-25.33	-34.66 to -16.01	Yes	****
50 μg/mL vs. 100 μg/mL	-7.667	-16.99 to 1.656	No	ns

Figure-2, IC50 concentration was11.28µg/ml on ovarian cancer SKOV3 cell line, and increased doses inducemore cytotoxic effectin cancer cells.

Discussion

Nanoparticles have shown to be a promising tool for cancer treatment²⁵. The use of AuNPs as an anti-cancer agentagainstovarian and breast cancer was reported²⁶. In the currentexperiment, the antiproliferative activity of AuNPs nanoparticles to human ovarian cancer cells wasexamined. The study results showed that AuNPs exposure to cancer cells cause significant cytotoxicity in specific moderate concentrations. AuNPs exposure to cancer cells caused viability reduction and under the inverted microscope, detection of cell death

typicalcytopathologicalcharacteristicssuch

as rounding and loss of adherence. Moreover, reactive oxygen species (ROS) generation is enhanced by AuNPs administration, and apoptosis induction inAuNPs-treated ovarian cancer cells^{16,27}. Furthermore,^{28,29}group has proved that 20 nm AuNPs repressedovarian cancer cell proliferation, angiogenesis, and metastases in an experimental mouse model.

The IC50 concentrations noticed in our current study which is 11.28 µg/ml on ovarian cancer cells, while it requires higher concentration IC50 on normal humandermal fibroblast (NHDF) cellswhich ranged from 17.9 to 19.3µg/ml noticed by another study³⁰. This difference proves that cancer cells are more susceptible to AuNPs therapy than normal cells, which prove safety. Our study found that AuNPs was selective in killing cancer cells by causing cell death at less dose than in normal dermal fibroblast cells. As we found, it needs $11.28 \mu g/ml$ to induce cytotoxicity, and another investigator ³⁰ found it needs 17.9 to 19.3 μ g/ml to induce cytotoxicity in normal dermal cells.The fibroblast current study investigated the response to AuNPs nanoparticles exposure in ovarian cancer cells because apoptosis can be recognized morphologically.

Conclusion,

we have shown that AuNPs nanoparticles produce significant selective cytotoxicity against cancer cells through death pathway activation.

Conflict of interest

The authors declare that there is no conflict of interest.

References

- 1. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1. 0, cancer incidence and mortality worldwide: IARC CancerBase No. 11. Lyon, France: International agency for research on cancer. 2013;2016.
- Chornokur G, Amankwah EK, Schildkraut JM, Phelan CM. Global ovarian cancer health disparities. *Gynecologic oncology*. 2013;129(1):258-264.
- 3. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. *Best Pract Res Clin Obstet Gynaecol.* 2017;41:3-14.
- 4. Al-Shammari AM. Environmental pollutions associated to conflicts in Iraq and related health problems. In. *Reviews on Environmental Health*. Vol 312016:245.
- 5. (Iraq) MoH. Iraq Cancer Registry 2015. In. Baghdad, Iraq: Ministry of Health (Iraq); 2015.
- Bowtell DD, Böhm S, Ahmed AA, et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. *Nature Reviews Cancer*. 2015;15:668.
- Patch A-M, Christie EL, Etemadmoghadam D, et al. Whole–genome characterization of chemoresistant ovarian cancer. *Nature*. 2015;521:489.
- Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. *Artificial Cells, Nanomedicine, and Biotechnology.* 2016;44(2):672-679.
- Al-Shammari AM, Zainal IG, Kachi W. Oncolytic Virotherapy and Cobalt Ferrite Nanoparticles as Breast Cancer Therapy. Paper presented at: MOLECULAR THERAPY2018.
- 10. Zainal IG, Al-Shammari AM, Kachi W. Characterization of the modified nickel-zinc ferrite nanoparticles coated with APTES by salinization reaction. *AIP Conference Proceedings*. 2018;1968(1):030008.

Source of Funding

No.2

The work is self-funding and no specific funding was received.

Ethical Clearance

The work approved by the Al-Diwaniya maternity and child teaching hospital scientific committee.

- 11. Kachi W, Al-Shammari AM, Zainal IG. Cobalt ferrite nanoparticles: Preparation, characterization and salinized with 3aminopropyl triethoxysilane. Paper presented at: Energy Procedia2019.
- 12. Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. *J Toxicol Environ Health B Crit Rev.* 2011;14(8):593-632.
- 13. Alsabari I, Thahab S, Al-Shammari A, Saadoon B, Allebban Z. Nano-drug delivery system as a model for the treatment of breast cancer. *The Breast.* 2017;32:S28-S29.
- 14. Gerber A, Bundschuh M, Klingelhofer D, Groneberg DA. Gold nanoparticles: recent aspects for human toxicology. *Journal of occupational medicine and toxicology (London, England).* 2013;8(1):32-32.
- 15. Zhang X-D, Wu D, Shen X, et al. Sizedependent in vivo toxicity of PEG-coated gold nanoparticles. *International journal of nanomedicine*. 2011;6:2071-2081.
- 16.Ali Z, Jabir M, Al- Shammari A. Gold Nanoparticles Inhibiting Proliferation of Human Breast Cancer Cell line. *Research journal of biotechnology*. 2019;14(S1):79-82.
- 17. Latha D, Prabu P, Arulvasu C, Manikandan R, Sampurnam S, Narayanan V. Enhanced cytotoxic effect on human lung carcinoma cell line (A549) by gold nanoparticles synthesized from Justicia adhatoda leaf extract. *Asian Pacific Journal of Tropical Biomedicine*. 2018;8(11):540.
- 18. Surapaneni SK, Bashir S, Tikoo K. Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. *Scientific Reports*. 2018;8(1):12295.
- 19. Jabir MS, Taha AA, Sahib UI, Taqi ZJ, Al-Shammari AM, Salman AS. Novel of nano delivery system for Linalool loaded on gold nanoparticles conjugated with CALNN peptide

- 20. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. In: *Breast Cancer Chemosensitivity*. Springer; 2007:1-22.
- 21. Al-Shammari AM, Alshami MA, Umran MA, et al. Establishment and characterization of a receptor-negative, hormone-nonresponsive breast cancer cell line from an Iraqi patient. *Breast Cancer : Targets and Therapy*. 2015;7:223-230.
- 22. Al-Shammari AM, Al-Juboory A, Asmaa A, Ali AM, Al-Hili ZA, Yaseen NY. Establishment and characterization of a chemoresistant glioblastoma cell line from an Iraqi patient. Paper presented at: Abstract presented at the 105th Annual Meeting of the American Association for Cancer Research2014.
- 23. AL-Shammari AM, Al-Hilli ZA, Yaseen NY. Molecular microarray study for the antiangiogenic effect of Newcastle disease virus on Glioblastoma tumor cells. Third International Scientific Conference on Nanotechnology, Advanced Material and Their applications,; 2011.
- 24. Al-Shammari AM, Salman MI, Saihood YD, et al. In vitro synergistic enhancement of Newcastle Disease Virus to 5-fluorouracil cytotoxicity against tumor cells. *Biomedicines*. 2016;4(1):3.
- 25.Ma D-D, Yang W-X. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. *Oncotarget*. 2016;7(26):40882-40903.
- 26. Kafshdooz L, Kafshdooz T, Razban Z, Akbarzadeh A. The application of gold nanoparticles as a promising therapeutic approach in breast and ovarian cancer. *Artificial Cells, Nanomedicine, and Biotechnology.* 2016;44(5):1222-1227.
- 27. Engelberth SA, Hempel N, Bergkvist M. Development of nanoscale approaches for ovarian cancer therapeutics and diagnostics. *Critical reviews in oncogenesis.* 2014;19(3-4):281-315.
- 28. Arvizo RR, Miranda OR, Thompson MA, et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. *Nano Lett.* 2010;10(7):2543-2548.
- 29. Mukherjee P, Bhattacharya R, Wang P, et al. Antiangiogenic properties of gold

nanoparticles. *Clin Cancer Res.* 2005;11(9):3530-3534.

30. Mateo D, Morales P, Ávalos A, Haza AI. Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. *Journal of Experimental Nanoscience*. 2015;10(18):1401-1417.