Expression of aph(3')-IIb and Aminoglycoside Efflux Pump Regulatory Genes in Clinical Extensive Drug Resistant Pseudomonas aeruginosa.

Running title: Relative gene expression of Aminoglycoside modifying enzyme aph(3')-IIb and efllux pump regulatory genes in XDR Pseudomonas aeruginosa.

Authors

  • Shaimaa Shakir altofaily University of Al-Qadisiyah/ College of Medicine/ Department of Medical Microbiology
  • Ibtisam Habeeb Al-Azawi Department of Medical Microbiology; College of Medicine; Al-Qadisiyah University; Iraq

Keywords:

XDR P. aeruginosa, aminoglycoside modifying enzymes, aph (3')-IIb, MexXY- OprM Pump, Aminoglycoside resistance.

Abstract

Background: A remarkable level of aminoglycosides  resistance expressed by Pseudomonas aeruginosa is well known. One of the most important mechanisms of aminoglycoside resistance is over expression of efflux pumps and aminoglycoside modifying enzymes.

Aim of Study: To evaluate the expression of aph(3')-IIb and MexXY-OprM Pump Regulatory Genes in XDR Pseudomonas aeruginosa in Al-Diwaniyah city.

Methods: During the period from November 2021 to August 2022, 50 clinical P. aeruginosa isolated from hospitalized  patients admitted to Al-Diwaniyah Burn Center and Al-Diwaniyah Teaching Hospital including 25(31.3%) burns, 15(22.7%)   wounds, and 10(18.5%) diabetic foot ulcers. The vitek2 compact system was employed for identification and antibiotic susceptibility test of P. aeruginosa. The isolates were submitted to PCR and qRT-PCR for aph(3')-IIb, mexZ, and parR detection and gene expression.

Results: Out of 50 P. aeruginosa, 22(44%) XDR and 9(18%) MDR isolates were detected. All XDR isolates were resistance to all tested antibiotics except one. Aminoglycoside resistance was exhibited in 100% of XDR isolates phenotypically. All isolates harbored aph(3')-IIb, mexZ, and parR genes. The qRT-PCR results showed significant overexpression of  aph(3')-IIb and parR, while mexZ revealed significant low expression in XDR P. aeruginosa compared with susceptible P. aeruginosa isolates.

Conclusion: High frequencies of XDR P. aeruginosa from various clinical sources, which further restricts the range of available treatments. The predominant mechanisms of aminoglycosides resistance exhibited by XDR P. aeruginosa in this region are overexpression of  efflux pumps, and aminoglycoside modifying enzyme, aph(3')-IIb.

References

- Bassetti M, Vena A, Croxatto A, Righi E, Guery B. (2018). How to manage Pseudomonas aeruginosa infections. Drugs Context 7:212527. https://doi .org/10.7573/dic.212527.

- Moradali, M.F.; Ghods, S.; Rehm, B.H. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 7, 39. [CrossRef] [PubMed].

- Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology advances, 37(1), 177-192.?

- Rubin J, Mussio K, Xu Y, Suh J, Riley LWJMDR (2020) Prevalence of antimicrobial resistance genes and integrons in commensal Gram-negative bacteria in a college community.

- Wang Y, Venter H, Ma S. (2016). Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. Curr Drug Targets 17:702–719. https://doi.org/10.2174/1389450116666151001103948.

- Mesaros N, Glupczynski Y, Avrain L, Caceres NE, Tulkens PM, Van Bambeke F. (2007). A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother 59:378 –386. https://doi.org/10.1093/jac/dkl504.

- Morita Y, Tomida J, Kawamura Y. (2015). Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux.

- Kawalek, A.; Modrzejewska, M.; Zieniuk, B.; Bartosik, A.A.; Jagura-Burdzy, G. (2019). Interaction of ArmZ with the DNA-binding domain of MexZ induces expression of mexXY multidrug efflux pump genes and antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother, 63, e01199-19. [CrossRef] [PubMed].

- Mena, A., Smith, E. E., Burns, J. L., Speert, D. P., Moskowitz, S. M., Perez, J. L., & Oliver, A. (2008). Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. Journal of bacteriology, 190(24), 7910-7917.?

- Farshadzadeh, Z.; Khosravi, A.D.; Alavi, S.M.; Parhizgari, N.; Hoveizavi, H. (2014). Spread of extended-spectrum _-lactamase genes of bla OXA-10, bla PER-1 and bla CTX-M in Pseudomonas aeruginosa strains isolated from burn patients. Burns, 40, 1575–1580. [CrossRef].

- Poole, K. (2011). Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol, 2, 65. [CrossRef].

- Botelho, J.; Grosso, F.; Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa—Mechanisms, epidemiology and evolution. Drug Resist. Updates, 44, 100640. [CrossRef] [PubMed].

- Seupt, A., Schniederjans, M., Tomasch, J., & Häussler, S. (2020). Expression of the MexXY aminoglycoside efflux pump and presence of an aminoglycoside-modifying enzyme in clinical Pseudomonas aeruginosa isolates are highly correlated. Antimicrobial Agents and Chemotherapy, 65(1), e01166-20.?

- CLSI. (2021). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute.

- Osundiya, O. O., Oladele, R. O., & Oduyebo, O. O. (2013). Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos University Teaching Hospital. African Journal of Clinical and Experimental Microbiology, 14(3), 164-168.?

- Aghazadeh, M., Rezaee, M. A., Nahaei, M. R., Mahdian, R., Pajand, O., Saffari, F., ... & Hojabri, Z. (2013). Dissemination of aminoglycoside-modifying enzymes and 16S rRNA methylases among Acinetobacter baumannii and Pseudomonas aeruginosa isolates. Microbial Drug Resistance, 19(4), 282-288.?

- Singh, M., Yau, Y. C., Wang, S., Waters, V., & Kumar, A. (2017). MexXY efflux pump overexpression and aminoglycoside resistance in cystic fibrosis isolates of Pseudomonas aeruginosa from chronic infections. Canadian journal of microbiology, 63(12), 929-938.?

- Jolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome open research, 3, 124. https://doi.org/10.12688/wellcomeopenres.14826.1

- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2? ??CT method. methods, 25(4), 402-408.?

- Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., ... & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection, 18(3), 268-281.?

- Kollef, M. H., Torres, A., Shorr, A. F., Martin-Loeches, I., & Micek, S. T. (2021). Nosocomial infection. Critical care medicine, 49(2), 169-187.?

- Elmassry, M. M., Mudaliar, N. S., Colmer-Hamood, J. A., San Francisco, M. J., Griswold, J. A., Dissanaike, S., & Hamood, A. N. (2020). New markers for sepsis caused by Pseudomonas aeruginosa during burn infection. Metabolomics, 16, 1-16.?

- Sandhu, R., Dahiya, S., & Sayal, P. (2016). Evaluation of multiple antibiotic resistance (MAR) index and Doxycycline susceptibility of Acinetobacter species among inpatients. Indian J. Microbiol. Res, 3(3), 299.?

- Ejiofor, S.O., Edeh, A.D., Ezeudu, C.E., Gugu, T.H. and Oli, A.N. (2016). Multi-drug resistant acute otitis media amongst children attending out-patient clinic in Chukwuemeka Odumegwu Ojukwu University Teaching Hospital, Awka, South-East Nigeria. Adv. Microbiol., 6 (07): 495.

- Al-Janahi, H. C. L., Khalil, S. A., Almohana, A. M., & Al-sherees, H. A. A. (2020). Dissemination of New Delhi Metallo-?-Lactamase (BLANDM) Gene in Pseudomonas aeruginosa Isolates from Burn Center in Najaf, Iraq.

- Naser, H.H. (2020). Recombinant Bacteriophage Endolysin LysPA26 Against clinical Isolates of Extensively Drug Resistant (XDR) Pseudomonas aeruginosa. Unpublished PhD thesis. College of Medicine. Al-Qadisiyah University.

- Horcajada, J.P., Montero, M. Oliver, A., Sor, L., Luque, S., Gomez-Zorrilla, S., Benito, N. and Graue, S. (2019). Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev., 32(Issue 4): e00031-19.

- del Barrio-Tofiño, E., López-Causapé, C., & Oliver, A. (2020). Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired ?-lactamases: 2020 update. International journal of antimicrobial agents, 56(6), 106196.?

- Torrens, G., van der Schalk, T. E., Cortes-Lara, S., Timbermont, L., del Barrio-Tofiño, E., Xavier, B. B., ... & ASPIRE-ICU study team. (2022). Susceptibility profiles and resistance genomics of Pseudomonas aeruginosa isolates from European ICUs participating in the ASPIRE-ICU trial. Journal of Antimicrobial Chemotherapy.?

- Diggle, S. P., & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166(1), 30.?

- Hasan, S.A., Najati, A.M., Abass, K.S. (2019). Isolation and identification of multi-drug resistant “pseudomonas aeruginosa” from burn wound infection in Kirkuk City, Iraq. Eurasia J. Biosci., 13:1045-1050.

- Al-Khikani, F.H. (2020). Antimicrobial resistance profile among major bacterial pathogens in southern Babil, Iraq. Gal. Med. J., 27 (3): E202036.

- Alsaady, Akram F. (2022). Dissemination and Molecular Characterization of Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa in Najaf Province. Unpublished master's thesis. University of Kufa, Faculty of Medicine, Department of Microbiology.

- Al-Shabbani, H. A., & Al-Azawi, I. H. (2022). The effect and characterizations of silver nanoparticles on biofilm formation in Pseudomonas aeruginosa isolated from UTIs patients. International Journal of Health Sciences, 6(S4), 4645–4662. https://doi.org/10.53730/ijhs.v6nS4.9160.

- Moghnieh, R. A., Kanafani, Z. A., Tabaja, H. Z., Sharara, S. L., Awad, L. S., & Kanj, S. S. (2018). Epidemiology of common resistant bacterial pathogens in the countries of the Arab League. The lancet infectious diseases, 18(12), e379-e394.?

- Thacharodi, A., & Lamont, I. L. (2022). Aminoglycoside-Modifying Enzymes Are Sufficient to Make Pseudomonas aeruginosa Clinically Resistant to Key Antibiotics. Antibiotics, 11(7), 884.?

- Azim, N. S. A., Al-Harbi, M. A., Al-Zaban, M. I., Nofal, M. Y., & Somily, A. M. (2019). Prevalence and Antibiotic Susceptibility among Gram Negative Bacteria Isolated from Intensive Care Units at a Tertiary Care Hospital in Riyadh, Saudi Arabia. J. Pure Appl. Microbiol, 13, 201-208.?

- Alnasser, A. H. A., Al-Tawfiq, J. A., Ahmed, H. A. A., Alqithami, S. M. H., Alhaddad, Z. M. A., Rabiah, A. S. M., ... & Alnasser, A. A. H. (2021). Public knowledge, attitude and practice towards antibiotics use and antimicrobial resistance in Saudi Arabia: A web-based cross-sectional survey. Journal of Public Health Research, 10(4), jphr-2021.?

- Hafiz, T. A., Bin Essa, E. A., Alharbi, S. R., Alyami, A. S., Alkudmani, Z. S., Mubaraki, M. A., ... & Alotaibi, F. (2023). Epidemiological, Microbiological, and Clinical Characteristics of Multi-Resistant Pseudomonas aeruginosa Isolates in King Fahad Medical City, Riyadh, Saudi Arabia. Tropical Medicine and Infectious Disease, 8(4), 205.?

- Dakhl, Z. F., & Alwan, S. K. (2015). Dissemination of Aminoglycosides Resistance in Pseudomonas aeruginosa Isolates in Al-Diwaniya Hospitals. International Journal, 3(11), 376-384.

- Abdul-Wahid, A. A. A., & Almohana, A. M. (2015). Dissemination of Aminoglycosides Resistance in Pseudomonas aeruginosa Isolates in Al-Nasseryia Hospitals Pseudomonas aeruginosa, 2, 3.?

- Kim, C., Cha, J. Y., Yan, H., Vakulenko, S. B., & Mobashery, S. (2006). Hydrolysis of ATP by aminoglycoside 3'-phosphotransferases: an unexpected cost to bacteria for harboring an antibiotic resistance enzyme. The Journal of biological chemistry, 281(11), 6964–6969. https://doi.org/10.1074/jbc.M513257200.

- George, A. M., & Levy, S. B. (1983). Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. Journal of Bacteriology, 155(2), 531-540.?

- Muller, C., Plésiat, P., & Jeannot, K. (2011). A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and ?-lactams in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 55(3), 1211-1221.

- Al-Wahid, A.A and Al-Azawi, I.H. (2020). Occurrence of Plasmid-Mediated carbapenem Resistance genes among Pseudomonas aeruginosa isolated from clinical and hospital environmental samples in Al -Nasseryia city, Iraq. 12. 4542. 10.31838/ijpr/2020.SP2.568.

- Al-Azawi, I. H., & Al-Shabbani, H. A. (2022). Molecular study of quorum sensing and biofilm formation genes in Pseudomonas aeruginosa isolated from UTIs patients. International Journal of Health Sciences. 6.S4: 12121-12134.

- Dhairh, S. H., & Al-Azawi, I. H. (2022). Comparative study between standard pyocyanin and extracted pyocyanin and synergistic with antibiotics against multidrug bacteria isolated from different clinical samples. International Journal of Health Sciences, 6(S6),4320–4334. https://doi.org/10.53730/ijhs.v6nS6.10274.

Downloads

Published

2024-12-31

Issue

Section

Microbiology